

Monochrome Line Scan Camera

2048 pixels 12.5 x 500 µm², line frequency up to 7.14 kHz

CMOS line scan camera, spectral range 200 to 1000 nm, 7.14 kHz line rate, rectangular pixel shape, suitable for spectrophotometry.

Instruction Manual

Sample Configuration

- 1 CCD line scan camera
 - SK2048U3HU

mounted with

- 2 Mounting bracket SK5105
- Clamping claws SK5102
- 4 Video (CCTV)-objectiv

Please read the following sections of this Instruction Manual before unpacking, assembly or use of the Line Camera System:

The safety warnings on this page Introduction to the system, page 4

Installation and Setup, page 6

Keep this Instruction Manual in a safe place for future reference.

Safety Warnings

▶ Electricity Warning

Assembly and initial operation of the line scan camera must be carried out under dry conditions.

Do not operate the camera if you notice any condensation or moisture in order to avoid danger of a short circuit or static discharge!

Line scan cameras are mostly used in combination with a motion device such as a translation stage, a conveyer or a rotational drive, as well as with high intensity light sources.

For assembly close down these devices whenever possible. Beyond that, please consider the following warnings:

Mechanics Warning

Ensure that the motion device and the scan way is free to move and that no obstacles are in the way.

Do not place any part of the body in the way of moving parts!

Risk of High Power Lighting

According to the application, laser or high power LED light sources might be used. These can affect your eyesight temporarily or even cause permanent damage to the eyes or skin.

Do not look directly into the light beam!

Safe		se this Instruction Manual rnings	2 2 3
1	Intro	duction	4
	1.1	Intended Purpose and Overview	4
	1.2	System Setup at a Glance	4
	1.3	Computer System Requirements	5
	1.4	SK2048U3HU Line Scan Camera - Specifications	5
2	Insta	allation and Setup	6
	2.1	Mechanical Installation: Mounting Options and Dimensions	6
	2.2	Electrical Installation: Connections and I/O Signals	7
	2.3	USB3 Connections and SkLineScan Software Installation	8
		SkLineScan Installation and Automatic Camera Driver Installation	8
		SkLineScan Start-up Camera Setup	8 8
		Initial Function Test	9
3	Cam	era Control and Performing a Scan	11
	3.1	Software: SkLineScan	11
		Function Overview: SkLineScan Toolbar	11
		Visualization of the Sensor Output	12
	3.2	Adjustments for Optimum Scan Results	13
		Lens Focussing Sensor Alignment	13 14
		Gain/Offset Adjustment	14
		Shading Correction	15
		Optimum brightness adjustment, Integration Time	16
		Synchronization of the Image Acquisition with the Feed Rate of the Object	17
4	م داد ۵	Synchronization Modes	18
4	4.1	Anced Camera Control Functions	20 20
	4.1	Camera Control by Commands Set Commands	21
		Request Commands	21
	4.2	Advanced Synchronization Control	22
		Advanced Trigger Functions and Sync Control Register (SCR) Settings	22
		Example Timing Diagrams	23
5	Sens	sor Information	24
Glos	sary		27
	-	rmity	29
	ranty	-	29
	essor	ies	30

Introduction

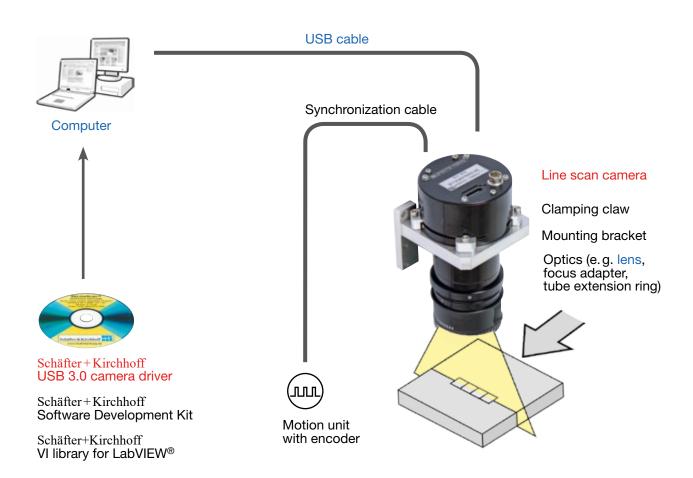
Intended Purpose and Overview

The SK line scan camera series is designed for a wide range of vision and inspection applications in industrial and scientific environments. The SK2048U3HU is highly portable and the robustly attached dedicated connections enable external synchronization of the camera and the output of data to the USB 3.0 port of the computer.

The USB 3.0 connection supplies power to the camera and the camera is hot-pluggable, providing the greatest degree of flexibility and mobility. The computer does not require a grabber board, allowing a laptop to be used when space or weight restrictions are also at a premium.

Once the camera driver and the SkLineScan® program have been loaded from the SK91USB3-WIN CD then the camera can be parameterized. The parameters, such as integration time, synchronization mode or shading correction, are permanently stored in the camera even after a power-down or disconnection from the PC.

The oscilloscope display in the SkLineScan® program can be used to adjust the focus and aperture settings, for evaluating field-flattening of the lens and for orientation of the illumination and the sensor, see Software: SkLineScan, p. 11.


System Setup at a Glance

SK2048U3HU scope of delivery red:

accessories for minimum system configuration blue:

black: optional accessories

For accessory order details see Accessories, p. 30.

ion Manual SK2048U3HU | shared_SystemRequirements_Specs_ML.indo

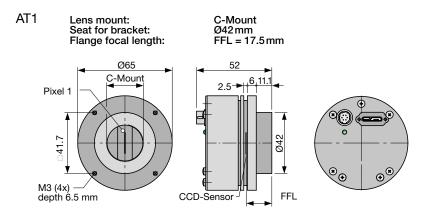
1.3 Computer System Requirements

- Intel Pentium Dual Core or AMD equivalent
- RAM min. 4 GB, depending on the size of acquired images
- USB 3.0 or USB 2.0 interface.
- High-performance video card, PCle bus
- Operating Systems: Windows 7 / 8.1 / 10 (64 or 32-bit) or Linux kernel 3.13 or higher

1.4 SK2048U3HU Line Scan Camera - Specifications

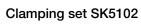
Sensor category	CCD Monochrome Sensor				
Sensor type	S11637-2048Q				
Pixel number	2048				
Pixel size (width x length)	500 x 12.5 μm ²				
Pixel spacing	12.5 μm				
Active sensor length	25.6 mm				
Anti blooming	x				
Integration control	x				
Shading correction	x				
Threshold detection	x				
Line synchronization modes	Line Sync, Line Start, Exposure Start, Exposure Active				
Frame synchronization	x				
Pixel frequency	15 MHz				
Maximum line frequency	7.14 kHz				
Integration time	0.01 20 ms				
Dynamic range	1:5000 (rms)				
Spectral range	200 1000 nm				
Video signal	monochrome 8/12 Bit digital				
Interface	USB 3.0				
Voltage	USB (350 mA)				
Power consumption	1.8 W				
Casing	Ø65 mm x 54 mm (Case type AT2)				
Objective mount	M40x0.75				
Flange focal length	19.5 mm				
Weight	0.2 kg				
Operating temperature	+5 +45°C				

2.1 Mechanical Installation: Mounting Options and Dimensions


Mounting Options

- The best fixing point of the camera is the collar for the mounting bracket SK5105 (available as an accessory).
- Four threaded holes M3x6.5mm provide further options for customized brackets.
- The length and weight of the optics might be beyond the capability of the standard mounting bracket SK5105. For this purpose, a second mounting bracket type SK5105-2 to hold the tube extension ring(s) is more appropriate.

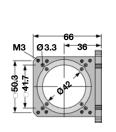
Optics Handling

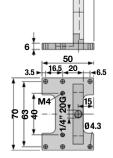

- If the camera and the optics are ordered as a kit, the components are pre-assembled and shipped as one unit. Keep the protective cap on the lens until the mechanical installation is finished.
- If you must expose the sensor or lens surface, ensure the environment is as dust-free as possible.
- Gently blow off loose particles using clean compressed air.
- The sensor and lens surfaces can be cleaned with a soft tissue moistened with water or a water-based glass cleaner.

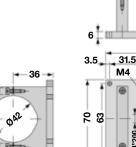
Casing type AT2

Mounting bracket SK5105

Set of 4 pcs. clamping claws incl. screws


Mounting system SK5105-2


for cameras with a tube extension > 52 mm


Hex socket head screw DIN 912-M3x12

10 10

2.2 Electrical Installation: Connections and I/O Signals

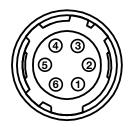
- The USB 3.0 interface provides data transfer, camera control and power supply capabilities to the SK2048U3HU line scan camera. If you want to operate the camera in Free Run (SK Mode 0) trigger mode the USB 3.0 cable is the only connection you have to make.
- For any kind of synchronized operation, the external trigger signal(s) must be wired to socket 2. A frame-synchronization signal and two separate line-synchronization signals can be handled. The various trigger modes are described fully in section Synchronization of the Image Acquisition with the Feed Rate of the Object, p. 17

All Schäfter+Kirchhoff USB 3.0 line scan cameras can be operated with a USB 2.0 interface. Note that there might be limitations in terms of the maximum data transfer rate. The details for your camera can be found in section *Line Scan Camera - Specifications*, p. 5.

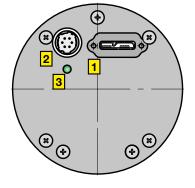
If the power consumption of the camera exceeds 4.5 Watt (USB 3.0) or 2.5 Watt (USB 2.0), then connect an external

source to socket 2.

Data and power


USB 3.0 socket type µB with threaded holes for locking screws

Power: 1.8 W


Synchronization

Socket: Hirose series 10A, male 6-pin

Pin	Signal	Pin	Signal
1	Line Sync B	4	NC
2	2 NC		Line Sync A
3	3 Frame Sync		GND

Line Sync A/B and Frame Sync: TTL levels

3 Status indicator

off no power, check the USB link for a fault.

red power on

green power on, firmware is loaded, camera is ready

Accessories (see also Accessories, p. 30):

USB 3.0 cable SK9020.x

For connecting socket 1 with the PC or USB hub.

Cable length:

1.0 m SK9020.1

3.0 m SK9020.3 (standard)

External synchronization cable SK9026.x

Use this cable to feed external synchronization signals into socket 2.

Connectors:

Hirose plug HR10A, female 6 pin (camera side) Phoenix 6 pin connector incl. terminal block

Cable length:

3.0 m SK9026.3 5.0 m SK9026.5

2.3 USB3 Connections and SkLineScan Software Installation

This section is a quick reference for installing the **SkLineScan** adjustment and configuration software and to set up the USB3 camera driver. SkLineScan and the SkLineScan manual is provided for download on the Schäfter+Kirchhoff website under *http://www.sukhamburg.com/support.html*. It is also part of the fee-based software development kit **SK91USB3-WIN**.

Step 1: Install **SkLineScan**. The setup program will automatically install the Schaefter+Kirchhoff USB3 Line Scan Camera Driver.

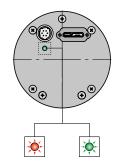
Step 2: Plug in the USB3 connection cable to the camera. if appropriate switch on the external power supply.

Step 3: Start the SkLineScan program.

SkLineScan Installation and Automatic Camera Driver Installation

Prior to the installation, power on the PC (not the camera) and unpack the downloaded zip-file to a temporary folder. Alternatively, if your installation medium is a CD, insert the disk to the drive.

The autostart function may launch the setup program automatically from CD. Otherwise, look for one of these installation files:


SkLineScan-USB3-Win_x64.msi SkLineScan-USB3-Win_x86.msi SK91USB3-Win_x64.msi SK91USB3-Win_x86.msi

Then start the applicable installation file manually. This will set up the Schäfter+Kirchhoff **SkLineScan** camera control and adjustment tool as well as the USB3 Line Scan Camera Driver.

SkLineScan Start-up

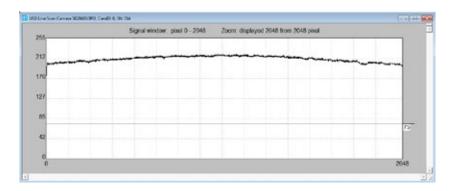
- Start SkLineScan.
- A start-up dialog box pops up and displays the connected camera(s) that have been automatically detected. It also indicates the active USB standard. The optimum performance is provided by USB 3.0.
- The camera LED changes from red to green color light.

Camera Setup

Use the Setup dialog for

- activating/deactivating a connected USB3 camera (activated device is ticked)
- changing the pixel frequency
- setting the bit depth of the video signal to 8 or 12-bit

In USB 2.0 mode the lower pixel frequency and 8-bit video signal is recommended


SkLineScan Setup dialog

ction Manual SK2048113HTT shared Installation-Software 11SB3 indic

Initial Function Test

- Quit the SkLineScan startup dialog box.
- Select "OK" in the SkLineScan start-up dialog.

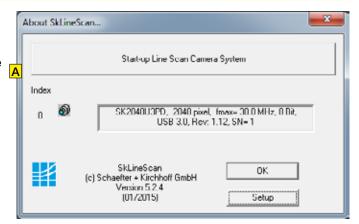
The Signal Window showing the current brightness versus the pixel number indicates the correct installation.

3 Camera Control and Performing a Scan

3.1 Software: SkLineScan

This section is a brief introduction to the SkLineScan adjustment and configuration software. A more detailed description is provided in the separate SkLineScan manual. The pdf is included in the SkLineScan installation package or is available for download from the Schäfter+Kirchhoff website under http://www.sukhamburg.com/supporte.html.

Detailed instructions on how to obtain optimal image data and use the data with the Schäfter+Kirchhoff software package can be found in the *SkLineScan Software Manual*.

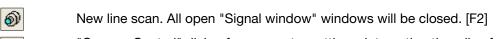

The most common functions of the line scan camera can be controlled by menu items and dialog boxes.

In the "Camera Gain / Offset Control" dialog there is a command line for entering further control commands.

Click on the desktop icon to start the **SkLineScan** program.

The SkLineScan program recognizes the connected line scan cameras automatically. The identified cameras are shown in the start-up dialog A.

If the SK2048U3HU camera is identified correctly, confirm with "OK". The "Signal window" graphicaly showing the intensity signals of the sensor pixels (oscilloscope display) will open. It is responsive in real-time and the zoom function can be used to highlight an area of interest. The oscilloscope display is ideally suited for parameterizing the camera, for evaluating object illumination, for focussing the image or for aligning the line scan camera correctly.



SkLineScan: Start-up dialog

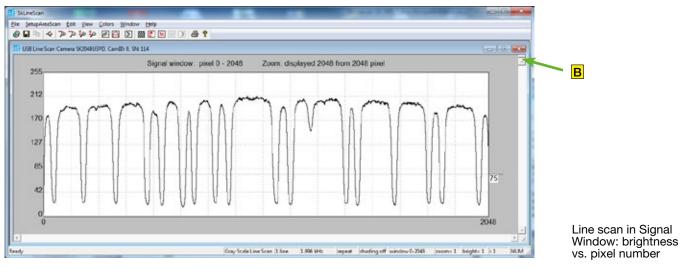

■ Function Overview: SkLineScan Toolbar

SkLineScan: Toolbar

"Camera Control" dialog for parameter settings: integration time, line frequency, synchronization mode, thresholding

"Shading Correction" dialog to adjust the white balance [Alt+s]

"Gain/Offset Control" dialog, also for commands input [Shif+F4]


New area scan

D

Signal Window / Oscilloscope Display

The signal window plots the digitalized brightness profile as signal intensity (y-axis) versus the sensor length (x-axis) at a high refresh rate. The scaling of the y-axis depends on the resolution of the A/D converter: The scale range is from 0 to 255 for 8-bits and from 0 to 4095 for 12-bits. The scaling of the x-axis corresponds with the number of pixels in the line sensor.

Zoom Function 🔑 🔑

With a high number of sensor pixels, details are lost due to the limited number of display pixels. With the zoom function you select a part of the sensor for the detailed display. The possible magnification ranges up to the representation of the intensity signal of individual pixels.

Window Split Function

The signal window can be divided horizontally into two areas. Use the slider **B** at the top of the vertical scroll bar. If you then use the zoom function in one frame, the selected section in the other frame will be highlighted in yellow.

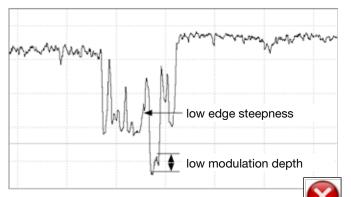
Line scan in split signal window: The upper frame shows an enlarged section of the lower frame.

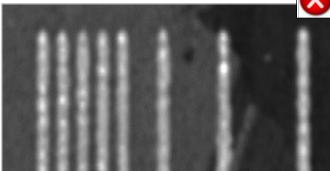
3.2 Adjustments for Optimum Scan Results

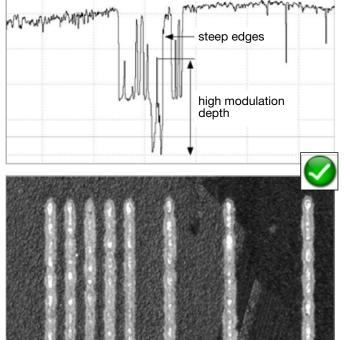
Prior to a scan, the following adjustments and parameter settings should be considered for optimum scan signals:

- Lens focussing
- Sensor alignment
- Gain/Offset
- Shading correction

- Integration time
- Synchronization of the sensor exposure and the object surface velocity, trigger mode options.


Start with the signal window / oscilloscope display. Any changes in the optical system or camera parameters are displayed in real-time when using an open dialog box.


Lens Focussing

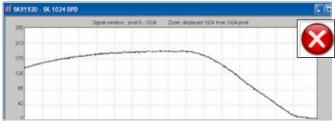

The real time Signal Window facilitates the effective focussing of the line scan camera system, even for two-dimensional measurement tasks. For determining the correct focus, the edge steepness at dark-bright transitions and the modulation of the line scan signal are the most important factors.

Adjust the focus with the aperture fully open to limit the depth of field and enhance the effects of changing the working distance.

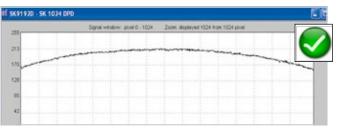
If the sensor is overloaded when the aperture is fully open, the easiest way to reduce the signal amplitude is to shorten the integration time, as described in section *Optimum brightness adjustment, Integration Time (p. 16)*.

Out-of-focus:

- Low edge steepness
- Signal peaks are blurred
- High spatial frequencies with low modulation depth

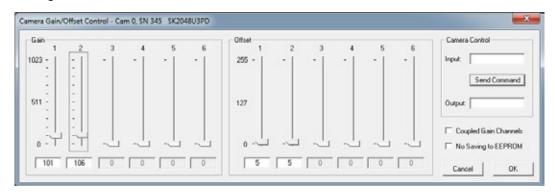

Optimum focus:

- Dark-bright transitions with steep edges
- Large modulation in the signal peaks
- High spatial frequencies with high modulation depth


ruction Manual SK2048U3HU | shared_CameraControl(2)_Adjustments-1_ML.ind

Sensor Alignment

If you are using a linear light source, check the alignment of the light source and sensor before shading correction, as rotating the line sensor will result in asymmetric vignetting.


Sensor and line lighting slightly twisted in relation to each other, asymmetric vignetting

Sensor and line lighting aligned in parallel, symmetric vignetting

Gain/Offset Adjustment

The cameras are supplied with factory-set gain/offset. Open the "Gain/Offset Control" dialog to adjust these settings.

Gain/Offset Control dialog

The gain/offset dialog contains up to 6 sliders for altering gain and offset. The number of active sliders depends on the individual number of adjustable gain/offset channels of the camera. If "Coupled Gain Channels" is checked, all channels are set synchronously with one slider.

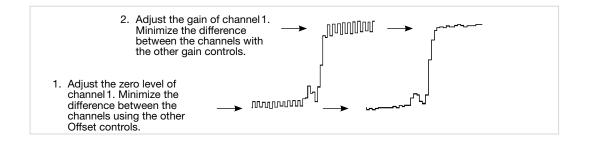
Enter commands for advanced software functions in the 'Camera Control' field (see page 11).

Adjustment principle

1. Offset

To adjust the zero baseline of the video signal, totally block the incident light and enter "00" (volts) for channel 1.

For a two- or multi-channel sensor, minimize any differences between the channels by adjusting the other Offset sliders.

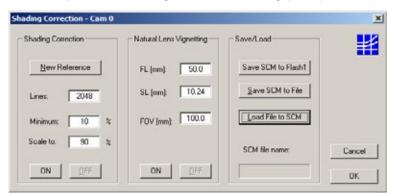

A slight signal noise should be visible in the zero baseline.

2. Gain

Illuminate the sensor with a slight overexposure in order to identify the maximum clipping. Use the Gain slider "1" to adjust the maximum output voltage.

For a two- or multi-channel sensor, minimize any differences between the channels by adjusting the other Gain sliders.

For the full 8-bit resolution of the camera, the maximum output voltage is set to 255 and for 12-bit is set to 4095.


Offset and gain adjustment for more than one gain/ offset channel

Shading Correction

Shading correction compensates for non-uniform illumination, lens vignetting as well as any differences in pixel sensitivity. The signal of a white homogeneous background is used as a reference. For correction, each pixel of the sensor is scaled to the intensity maximum with an individual factor (255 at 8 bit resolution and 4095 at 12 bit). The reference signal is stored in the camera's Shading Correction Memory (SCM). Subsequent scans are normalized with the scaling factors of this white reference.

Open the "Shading Correction" dialog (Alt+s).

Shading Correction dialog

- Use a homogeneous white object to capture the reference data, e.g. a white sheet of paper.
- Either take a 2-dimesional scan ("Area Scan Function" [F3]) or

use a single line signal that was averaged over a number of single line scans.

- To suppress influences of the surface structure, move the displayed object during image acquisition.
- Input the scale range:

Minimum in %: intensity values lower than "Minimum" will not be changed.

A typical appropriate value is 10% of the full intensity range, i.e. 26 (= $10\% \cdot 255$) for an 8-bit intensity scale.

Maximum in %: target value for scaling

A typical appropriate value is 90% of the full intensity range. The result will be a homogeneous line at 230 (= $90\% \cdot 255$) for an 8-bit intensity scale.

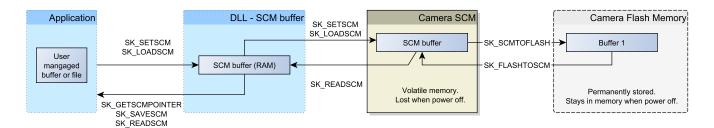
- Click on button New Reference
- Click on Save SCM to Flash to save the SCM reference signal in the flash memory of the camera


Once the reference signal is copied from the shading correction memory (SCM) to the camera flash memory it will persist even after a power down.

On a re-start, this data will be restored from the flash memory back to the SCM.

The current shading correction status - active or not active - is also retained after power down.

- **ON** Activate shading correction with the reference signal stored in the SCM.
- **OFF** Switch off Shading Correction. The shading correction data will not be loaded from the flash memory into the SCM the next time the camera is started even if the SCM data was previously stored in the flash memory.


Load File to SCM A stored reference signal is loaded into the SCM of the camera. Shading correction is then active.

After shading correction, the line scan signal has a homogeneous intensity at 255 (8 bit, Maximum 100%)

Shading Correction Memories and API Functions

As an alternative to the user dialog, a new shading correction reference signal can also be generated using API (Application Programming Interface) functions. The relationship between the memory locations and the related API functions are shown in the following figure. The API functions are included in the SK91USB3-WIN software package. For more information, refer to the *SK91USB3-WIN manual*.

Structure of the shading correction memories (SCM) and the related API functions for memory handling

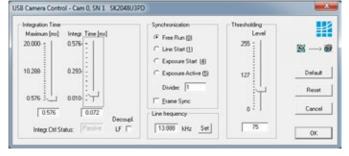
Optimum brightness adjustment, Integration Time

The brightness distribution of the line signal is influenced not only by the integration time, but also by the illumination and the aperture setting. It should be noted that the aperture setting affects the depth of field and thus the overall quality of the image.

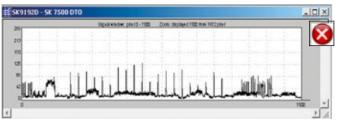
The line signal is optimal if the signal from the brightest area of the object corresponds to 95% of the maximum output value. At 8-bit digitizing depth, 256 brightness levels are available, at 12-bit 4096. In this setting, optimum signal sensitivity is achieved and overexposure or even blooming is avoided.

Open the Camera Control dialog. Menu Edit -> Operation Parameters or [F4]

- The integration time can be set by two vertical sliders or two input fields in the section Integration Time of this dialog. The left slider is for coarser the right for finer adjustments.
- The current line frequency is displayed in the Line Frequency status field.
- For cameras with integration control function (shutter), it is possible to shorten the integration time without increasing the line frequency. This integration control mode is activated as soon as the maximum line frequency of the camera is reached by shortening the integration time or by checking **Decoupl. LF** and thus the integration time is decoupled from the line frequency.


The **Default** button sets the integration time to the minimum exposure period that is determined from the maximum line frequency.

Reset restores the start values.


Cancel closes the dialog without changes.

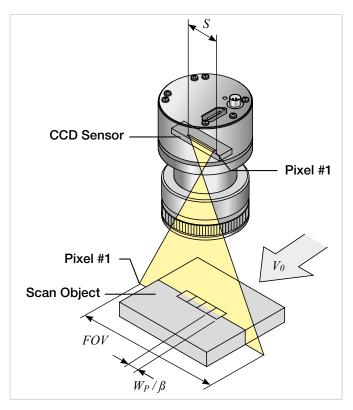
OK stores the integration time values and closes the dialog.

For synchronization settings, see section Synchronization of the Image Acquisition with the Feed Rate of the Object (p. 17).

SkLineScan Camera Control dialog

A camera signal with insufficient level: The integration time is too short, since only about 50% of the gray levels are used.

Optimized level of the camera signal after increasing the integration time by a factor of 4 to 95 % of the available scale.



Synchronization of the Image Acquisition with the Feed Rate of the Object

A line scan camera produces a two-dimensional image by moving either the object or the camera. The direction of the translation movement must be orthogonal to the sensor axis of the line scan camera.

In order to obtain an image with the correct aspect ratio, a line synchronous feed is required. With RGB color sensors, the color sequence of the individual sensor lines must also be taken into account when processing the sensor data. The software development kits from Schäfter+Kirchhoff contain easy-to-use functions for this purpose.

If the object speed is variable or the accuracy requirements are high, external synchronization is required. The various synchronization modes are described in the next section.

The optimal scan speed for a given line frequency is calculated as follows:

$$V_O = \frac{W_P \cdot f_I}{\beta}$$

If the scanning speed is fixed, the line frequency must be adjusted accordingly in order to obtain the correct aspect ratio in the image:

$$f_L = \frac{V_O \cdot \beta}{W_P}$$

 V_O = object scan velocity

 W_P = pixel width

 f_L = line frequency

S = sensor length

FOV = field of view

 β = magnification factor

= S/FOV

Example 1:

Calculating the scan velocity for a given field of view and a given line frequency:

Pixel width = $500 \mu m$ Line frequency = 7.14 kHz S = 25.6 mmFOV = 40 mm

$$V_O = \frac{12.5 \,\mu\text{m} \cdot 7.14 \text{ kHz}}{(25.6 \,\text{mm} / 40 \,\text{mm})}$$

$$= 139 \,\text{mm/s}$$

Example 2:

Calculating the line frequency for a given field of view and object scan velocity:

Pixel width $= 500 \mu m$ Scan velocity = 100 mm/s

S = 25.6 mm

FOV = 40 mm

f_L	=	100 mm/s · (25.6 mm / 40 mm)
JL	_	12.5 µm
	=	5.1 kHz

Synchronization Modes

The synchronization mode determines the exact timing of the exposure. Synchronization can either be performed internally or triggered by an external source, e.g. an encoder signal.

There are two different synchronization functions that can be applied together or individually:

1. Line synchronization:

The falling edge of a TTL signal at the LINE SYNC A input triggers each individual exposure of the sensor line by line.

The SK2048U3HU line scan camera enables extended synchronization control by means of a second trigger input LINE SYNC B. A detailed description can be found .under *Advanced Synchronization Control*, p. 22.

2. Frame synchronization:

The recording of a set of lines (frame) representing a two-dimensional image is started by the falling edge of a TTL signal at the FRAME SYNC input.

Free Run / SK Mode 0

The acquisition of each line is synchronized internally (free-running) and the next scan is started automatically after completion of the previous line scan. The line frequency is determined by the programmed value.

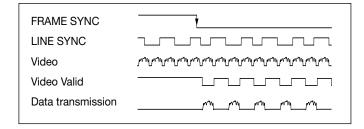
LineStart / SK Mode 1

After an external trigger pulse, the currently exposed line is read out at the next internal line clock. The start and duration of the exposure are controlled internally by the camera and are not affected by the trigger pulse. The exposure time is programmable. The line frequency is determined by the frequency of the trigger signal.

Limitations: The period of the trigger signal must be longer than the exposure time used. Between the external trigger signal and the internally generated line clock, jitter occurs in the range of the exposure time.

ExposureStart / SK Mode 4 (only available when camera supports integration control)

A new exposure is started exactly at the point in time of the external trigger pulse. The exposure time is determined by the programmed value. The exposed line is read out after the exposure time has elapsed. The frequency of the trigger signal determines the line frequency.

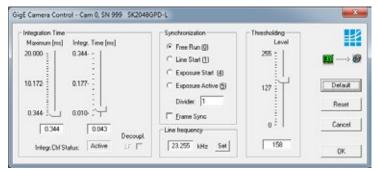

Restriction: The period duration of the trigger signal must be longer than the exposure time used.

ExposureActive / SK extSOS (Mode 5)

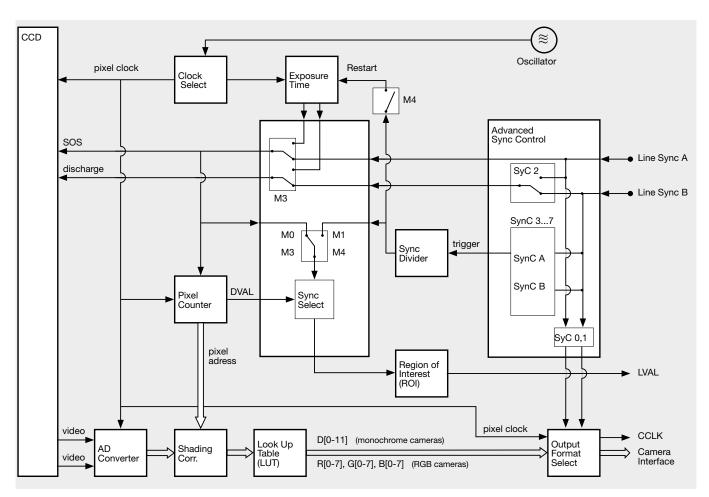
The exposure time and the line frequency are controlled by the external trigger signal. This affects both the start of a new exposure (Start of Scan-Pulse, SOS) and the readout of the previously exposed line.

FrameTrigger / SK FrameSync

The camera suppresses the data transfer until a falling edge of a TTL signal occurs at the FRAME SYNC input. This starts the acquisition of a 2D area scan. The number of image lines must be programmed in advance. Any of the available line synchronization modes can be used for the individual line scans.



Combined frame and line synchronization



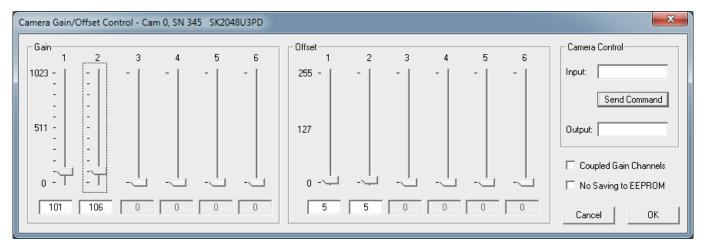
Manual SK2048U3HU | shared_CameraControl(3b)_Sync-Modes_GigE+V_USB3_ML.Indd

- To configure synchronization, open the Camera Control dialog. [F4]
- Within the **Synchronization** frame, select one of the numbered line synchronization modes.
- Within the camera, the trigger control stage is followed by a divider stage with which the trigger frequency can be divided by integer dividers. Enter the division ratio in the **Divider** field.
- Select the Frame Sync check box to activate frame synchronization. In the Delay field, enter the delay time in milliseconds.

Camera Control dialog

Functional diagram of the Camera Control System

4 Advanced Camera Control Functions


4.1 Camera Control by Commands

In addition to user dialog inputs, the SkLineScan software also provides the option to adjust camera settings, such as gain, offset, trigger modes, by sending control commands directly.

Similarly, current parameters, as well as specific product information, can be read from the camera using the request commands. All set and request commands are listed in the tables below.

- The commands are entered in the 'Input' field in the 'Camera Control' section of the "Camera Gain/Offset Control" user dialog, [Shift+F4].
- In the 'Output' field, either the acknowledgement of the set commands (0 = OK, 1 = not OK) or the return values of the request commands are output.

The parameter settings are stored in the non-volatile flash memory of the camera and are available after a rapid start-up, even after a complete shut down or loss of power.

Gain/Offset Control dialog: Camera Control input and output in the right section

Set Commands

0 . 0 .:	
Set Operation	Description
Goooo <cr></cr>	gain setting 0-24 dB
Oppp <cr></cr>	offset setting
F8 <cr></cr>	output format: 8 bit output data
F10 <cr></cr>	output format: 10 bit output data
F12 <cr></cr>	output format: 12 bit output data
C15 <cr></cr>	camera clock: 15 MHz data rate
T0 <cr></cr>	test pattern off / SCM off
T1 <cr></cr>	test pattern on (turns off with power off)
T2 <cr></cr>	shading correction on
T3 <cr></cr>	auto program Shading Correction / SCM on
T4 <cr></cr>	copy flash memory 1 to SCM
T5 <cr></cr>	save SCM to flash memory 1
T6 <cr></cr>	video out = SCM data
T7 <cr></cr>	copy Flash Memory 2 to LUT Memory
T8 <cr></cr>	save LUT Memory to Flash Memory 2
T9 <cr></cr>	output data = LUT data
Lppp <cr></cr>	set threshold level
M0 <cr></cr>	line trigger mode0: internal all lines
M1 <cr></cr>	line trigger mode1: extern trigger, next
	line
M2 <cr></cr>	line trigger mode0: internal all lines and
	set max line rate
M4 <cr></cr>	line trigger mode4: extern trigger and restart
M5 <cr></cr>	line trigger mode5: extern SOS, all lines
Mx+8	frame trigger extern, start on falling edge
Mx+16	frame trigger extern, active low
IVIX 110	
Axxxx <cr></cr>	SCM address (xxxxx = A0-A2047) or
	LUTM (xxxxx = A32768-A36863)
Dxxxx <cr></cr>	Memory data (xxxx = 0-4095), increment
Elana (CD)	memory address counter
Eyyyyy <cr></cr>	frames / multiframe (yyyyy = 0-32767) external frame trigger delay
EFyyyyy <cr></cr>	(yyyyy = 0-32767 lines)
Nyyyyy <cr></cr>	lines / frame (<i>yyyyy</i> = 1-32767)
1199999 (011)	
Wyyyyy <cr></cr>	line clock frequency
	(yyyyy = 50-7142) [Hz]
WLyyyyy <cr></cr>	Window Pixel length (yyyyy =1-Line length)
WFyyyyy <cr></cr>	Window First Pixel (yyyyy = 1-Line length)
Xyyyyy <cr></cr>	exposure time (<i>yyyyy</i> = 10-20000) [µs]
Vyyyyy <cr></cr>	extern sync divider ($yyyyy = 10^{-2}20000$) [µ3]
Yppp <cr></cr>	set sync control ($ppp = 255$)
1-1-1	
SDXT <cr></cr>	enable DXT (decoupling of line clock
	frequency and exposure time)
RDXT <cr></cr>	disable DXT (decoupling of line clock
	frequency and exposure time)
SLUT <cr></cr>	enable LUT
RLUT <cr></cr>	disable LUT

۸ ماریم میریام ما میموسم میری اور میل میری میری میری ا	
Acknowledgement for all set com	nands:
0 = 0K $1 = not 0K$	

SNES <cr></cr>	enable NES (no EEPROM save)
RNES <cr></cr>	disable NES (no EEPROM save)
RESET <cr></cr>	reset Memory to manufacturer default

Request Commands

Request	Return	Description
K <cr></cr>	SK2048U3HU	returns SK type number
R <cr></cr>	Rev. 1.24	returns Revision number
S <cr></cr>	SNr00163	returns Serial number
I <cr></cr>	SK2048U3HU Rev. 1.24 SNr00163	camera identification readout
I1 <cr></cr>	VCC: yyyyy	returns VCC (1=10mV)
I2 <cr></cr>	VDD: yyyyy	returns VDD (1=10mV)
I3 <cr></cr>	moo: <i>yyyyy</i>	returns mode of operation
I4 <cr></cr>	CLo: yyyyy	returns camera clock low frequency (MHz)
15 <cr></cr>	CHi: yyyyy	returns camera clock high frequency (MHz)
16 <cr></cr>	Ga: <i>yyyyy</i>	returns gain
I8 <cr></cr>	Of: yyyyy	returns offset
I14 <cr></cr>	THL: yyyyy	returns threshold level
I19 <cr></cr>	Tab: yyyyy	returns number of video channels
I20 <cr></cr>	CLK: yyyyy	returns selected clock frequency (MHz)
I21 <cr></cr>	ODF: yyyyy	returns selected output data format
122 <cr></cr>	TRM: yyyyy	returns selected trigger mode
123 <cr></cr>	SCO: yyyyy	returns shading corr. on/off
124 <cr></cr>	Exp: yyyyy	returns exposure time
125 <cr></cr>	miX: yyyyy	returns min. exposure time (µs)
I26 <cr></cr>	LCK: yyyyy	returns line frequency (Hz)
I27 <cr></cr>	maZ: yyyyy	returns max. line frequency (Hz)
I28 <cr></cr>	TSc: yyyyy	returns Sync Divider
I29 <cr></cr>	SyC: yyyyy	returns Sync Control
I30 <cr></cr>	Lin: yyyyy	returns Lines/Frame
I31 <cr></cr>	DXT: yyyyy	returns DXT on/off
132 <cr></cr>	Tmp: yyyyy	returns Video Board Temper.
133 <cr></cr>	FSD: yyyyy	returns Frame Trigger Delay
I36 <cr></cr>	WPL: yyyyy	returns Window Pixel Length
137 <cr></cr>	WFP: yyyyy	returns Window First Pixel
138 <cr></cr>	LUT: yyyyy	returns LUT on/off
139 <cr></cr>	KST: yyyyy	returns Status

LUT:

Lookup Table Shading Correction Memory Start of Scan SCM:

SOS: Range of values: 0000

= 0 ... 1023 = 0 ... 255 = 4 digits integer value as ASCII = 5 digits integer value as ASCII ppp XXXX ууууу

Advanced trigger functions are provided by combining LINE SYNC A with a second trigger input LINE SYNC B. The operation mode is controlled by the entries in the Sync Control Register (SCR).

Control commands to write to or to read from the Sync Control Register:

Yppp<CR> **set SCR** with ppp = 0...255 (decimal)

Return value: 0 = OK; 1 = not OK129<CR> return sync control

Return value: SyC:yyyyy (5-digits integer value as ASCII)

Example:

Y232

ppp = 232(dec) = 11101000(bin)

 \rightarrow E new SCR value: 11101000

Advanced Trigger Functions and Sync Control Register (SCR) Settings

- Basic synchronization function, 'Camera Control' dialog settings are valid
- $\rightarrow |A|$

 \rightarrow D, E

Detection of direction

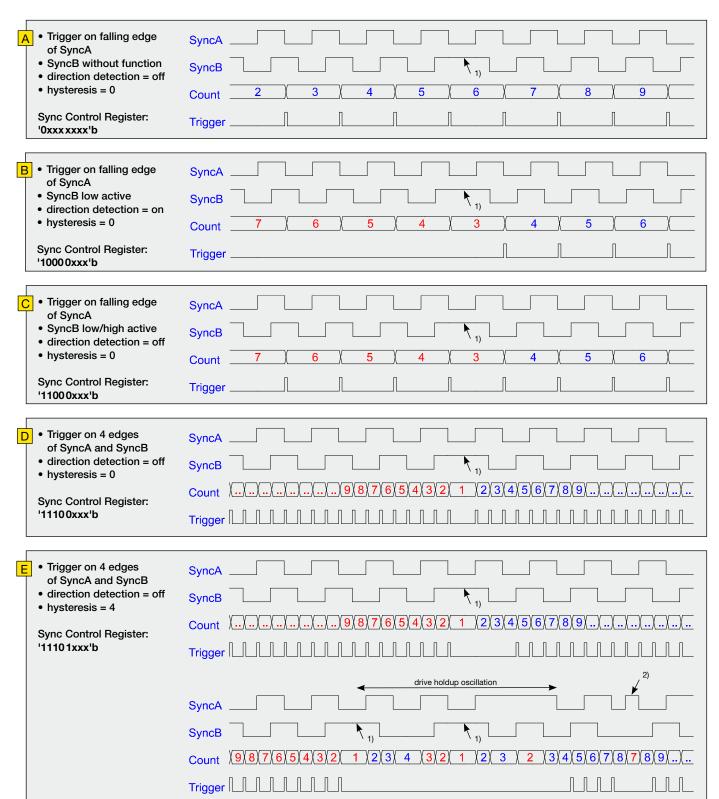
- \rightarrow B, C, D, E
- Trigger pulses are valid only in one direction, trigger pulses in the other direction are ignored \rightarrow B
- Trigger on 4 edges
- Suppression of jitter in the encoder signal, programmable hysteresis for trigger control

Sync Control Register (SCR)
default
pixel #1 data = external trigger input states
pixel #1 data = Linecounter (8 bit)
pixel #1, #2 data = ext. trigger states (3 bit) + line counter (13 bit)
ExSOS and Sync at LINE SYNC A (Mode5)
ExSOS at LINE SYNC B, Sync at LINE SYNC A (Mode5)
Jitter Hysterese off
Jitter Hysterese 4
Jitter Hysterese 16
Jitter Hysterese 64
Sync 1x Enable
Sync 4x Enable
Sync up Enable / down disable
Sync up/down Enable
Sync Ctrl. Disable, SyC3SyC6 without function
Sync Control Enable

SyC7	SyC6	SyC5	SyC4	SyC3	SyC2	SyC1	SyC0
х	х	х	х	х	х	0	0
х	х	х	х	х	х	0	1
х	х	x	х	х	х	1	0
х	х	×	х	x	х	1	1
х	Х	Х	Х	Х	0	Х	Х
х	Х	х	Х	Х	1	х	х
х	х	x	0	0	х	х	x
х	х	x	0	1	х	х	x
х	х	×	1	0	х	х	×
х	х	х	1	1	х	х	х
х	х	0	х	x	х	х	х
х	х	1	х	х	х	х	х
х	0	х	х	х	х	х	х
х	1	х	х	х	х	х	х
0	х	x	x	x	х	х	х
1	х	х	х	х	х	х	х
128	64	32	16	8	4	2	1

For diagnostic purposes, the present state of external trigger inputs (LINE SYNC A, LINE SYNC B, FRAME SYNC) or the internal line counter can be output instead of pixel #1 and/or pixel #2 data.

SCR	Pixel #1 Data (lowByte)	Pixel #2 Data (lowByte)
xxxxxx00	intensity	intensity
xxxxxx01	D7 = FRAME SYNC D6 = LINE SYNC A D5 = LINE SYNC B D4 D0 = 0	intensity
xxxxxx10	internal line counter (8 bit)	intensity
xxxxxx11	D7 = FRAME SYNC D6 = LINE SYNC A D5 = LINE SYNC B D4 D0 = line counter (bit 12 8)	internal line counter (bit 7 0)


Example Timing Diagrams

Annotations:

SyncA SyncB Count Trigger LINE SYNC A (external line synchronization input, I/O connector)
 LINE SYNC B (external line synchronization input, I/O connector)

= internal counter

- Generated trigger pulses from the Trigger Control stage. The signal goes to the Trigger
 Divider stage inside the camera. For setting the divider, use the Vyyyyy<CR> command or the
 'Divider' input field in the 4.1 Camera Control by Commands (p. 20).
 - 1) direction changed
 - 2) glitch

Type: S11637-2048Q, 2048 pixels

Data source: Hamamatsu CMOS linear image sensor series S11637

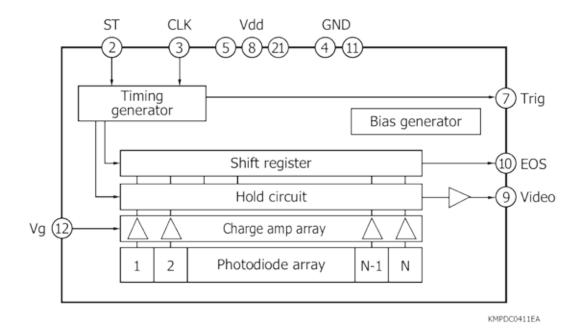
Cat. No. KMPD1131E02 Aug. 2016 DN

a) Features

• Electronic shutter function

• Gain switching function

• Pixel size: 12.5 x 500 μm

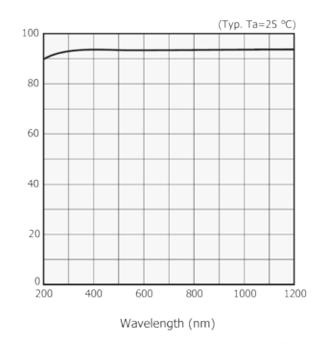

Readout speed: 10 MHz max.

Voltage output type

Simultaneous charge integration for all pixels

• Spectral response range: 200 to 1000 nm

b) Block Diagram



Transmittance (%)

c) Spectral Response (typical example)

(Ta=25 °C) S12198 series S12198 series S12198 series Wavelength (nm)

d) Spectral Transmittance Characteristics of Window Material

Relative sensitivity (%)

Ta = 25°C, Vdd = 5 V, V(CLK) = V(ST) = 5 V, f(CLK) = 10 MHz

Parameter		Complete	S11637 series			S12198 series			
Paramete	Symbol	Min.	Typ.	Max.	Min.	Typ.	Max.	Unit	
Spectral response range	λ		200 to 1000		200 to 1000			nm	
Peak sensitivity waveleng	jth	λр	-	600	-	-	750	-	nm
Dh. da a a a a sith site of	High gain	s	122	153	-	152	189	-	
Photosensitivity*5	Low gain		31	38	-	34	42	-	V/(lx·s)
Canuardan afficiansuth	High gain	CF.	0.95	1.18	-	0.45	0.56	-	
Conversion efficiency*6	Low gain	CE	0.24	0.30	-	0.10	0.13	-	μV/e-
Output offset voltage		Vo	0.3	0.6	0.9	0.3	0.6	0.9	V
Caturation charge	High gain	Qsat	-	0.45	-	-	0.94	-	pC
Saturation charge	Low gain		-	1.77	-	-	4.19	-	
Dark output valtage*7	High gain	Vd	-	5	50	-	2.6	26	mV
Dark output voltage*7	Low gain		-	1.4	14	-	0.6	6	
Dark output nonuniformi	ty*7 *11	DSNU	-	-	±200	-	-	±200	%
Temperature coefficient o	of dark output	ΔTd	-	1.1	-	-	1.1	-	times/°C
Saturation output voltage	*8	Vsat	2.7	3.3	-	2.7	3.3	-	V
Caturation avecause	High gain	Foot	-	22	-	-	17	-	m/x·s
Saturation exposure	Low gain	Esat	-	86	-	-	78	-	
Readout noise	High gain	NI-	-	1.5	2.5	-	1.1	2	mV rms
Readout noise	Low gain	Nr	-	0.7	1.2	-	0.6	1.1	
Photoresponse nonuniformity*5 *9		PRNU	-	-	±10	-	-	±10	%
Dunamic ranget10	High gain	DD	-	2200	-	-	3000	-	-
Dynamic range*10	Low gain	DR	-	4714	-	-	5500	-	

^{*5:} Measured with a 2856 K tungsten lamp

PRNU = $\Delta X/X \times 100$ [%]

DSNU = $\Delta Y/Y \times 100$ [%]

^{*6:} Output voltage generated per one electron

^{*7:} Integration time=10 ms

^{*8:} Voltage difference from Vo

^{*9:} Photoresponse nonuniformity (PRNU) is the output nonuniformity that occurs when the entire photosensitive area is uniformly illuminated by light which is 50% of the saturation exposure level. PRNU is measured using pixels excluding pixels each at both ends, and is defined as follows:

X: average output of all pixels, ΔX: difference between X and maximum output or minimum output

^{*10:} DR=Vsat/Nr

^{*11:} Dark output nonuniformity (DSNU) is the output nonuniformity of dark output voltage. DSNU is measured using pixels excluding pixels each at both ends, and is defined as follows:

Y: average dark output voltage of all pixels, Δ Y: difference between Y and maximum dark output voltage or minimum dark output voltage

Blooming

If by overexposure too many charge carriers are produced in one or several photosensitive elements (pixels) of the line sensor, the transport register is "flooded" with charge carriers, and also the following register bins are charged over the saturation limit. This spreading of a local overexposure along a line is called "blooming". In the resulting video signal an overexposed area includes too many pixels. In that area the geometric mapping between image and object is not correct.

CCD line scan cameras with anti-blooming sensors direct the abundant charge to a "drain gate". Charge overflow into adjacent, less illuminated pixels is prevented. Depending on pixel frequency and spectral range, overexposure up to factor of 50 can thus be handled.

Exposure period

is the illumination cycle of a line scan sensor. It is the → integration time plus the additional time to complete the read-out of the accumulated charges and the output procedure. While the charges from a finished line scan are being read out, the next line scan is being exposed. The exposure period is a function of the pixel number and the → pixel frequency. The minimum exposure period of a particular line scan camera determines the maximum → line frequency that is declared in the specifications.

Integration control

Cameras with integration control are capable of curtailing the \rightarrow *integration* time within an \rightarrow *exposure period*. This performs an action equivalent to a shutter mechanism.

Integration time

The light-sensitive elements of the photoelectric sensor accumulate the charge that is generated by the incident light. The duration of this charge accumulation is called the integration time. Longer integration times increase the intensity of the line scan signal, assuming constant illumination conditions. The complete read-out of accumulated charges and output procedure determines the minimum \rightarrow exposure period.

Line frequency, line scan frequency

is the reciprocal value of the \rightarrow *exposure period*. The maximum line frequency is a key criterion for line scan sensors as this is the limiting factor for the scan velocity.

Optical resolution

Two elements of a line scan camera determine the optical resolution of the system: first, the pixel configuration of the line sensor and, secondly, the optical resolution of the lens. The worst value is the determining value. In a phased set-up, both are within the same range.

The optical resolution of the line sensor is primarily determined by the number of pixels and secondarily by their size and spacing, the inter-pixel distance. Currently available line scan cameras have up to 12 000 pixels, ranging from 4 to 14 μ m in size and spacing, for sensors up to 56 mm in length and line scan frequencies up to 83 kHz.

During a scanning run, the effective resolution perpendicular to the sensor orientation is determined by the velocity of the scan and by the \rightarrow *line frequency*

Pixel frequency

The pixel frequency for an individual sensor is the rate of charge transfer from pixel to pixel and its ultimate conversion into a signal.

Region of Interest

A freely programmable window (region of interest, ROI) can be applied to the line sensor so that only the pixel information within the ROI can reach the memory.

By only illuminating these ranges, data volume and data processing is accelerated for both line and area scan acquisitions.

Constraint: the ROI memory allocation must be divisible by 8.

Shading correction

→ Shading Correction, section 3.2

SCM

Shading Correction Memory,

→ Shading Correction Memories and API Functions, section 3.2

Sol (Start of Integration)

In addition to \rightarrow SoS, cameras with \rightarrow Integration Control function generate an internal Sol-signal that initiates the integration period.

SoS (Start of Scan)

is an internally generated trigger signal for sequential control of the camera, The signal is induced either by an internal counter or by an external line synchronization signal, depending on the selected line synchronization mode.

- → Synchronization
- → Advanced Synchronization Control, section 4.2

SkLineScan

is the software application from Schäfter + Kirchhoff for controlling and adjusting the line scan cameras,

→ Software: SkLineScan, section 3.1

Synchronization

To obtain a proportional image with the correct aspect ratio, a line synchronous transport with the laterally correct pixel assignment is required. The \rightarrow *Line frequency* and constant object velocity have to be compatible with each other.

For more accurate requirements or with a variable object velocity, external synchronization is necessary.

→ Synchronization of the Imaging Procedure and the Object Scan Velocity, section 3.2

Thresholding (monochrome cameras only)

The thresholding process generates a binary signal from the gray scale data, with values below the threshold yielding 0 and those above yielding 1. Only the pixel addresses of the location and threshold transition (from high→low or low→high) are transmitted, reducing data throughput.

Thresholding is particularly appropriate for measuring widths or edge positions, by simply masking the required pixel addresses.

The product complies with the following standards and directives:

2014/30/EU

EMC Directive

DIN EN 61326-1:2013

Electrical equipment for measurement, control and laboratory use – EMC requirements

Part 1: General requirements

DIN EN 55011:2009 + A1:2010 / Group 1 / Class A

Industrial, scientific and medical equipment - Radiofrequency disturbance characteristics - Limits and methods of measurement

Class B limits (devices for usage in domestic establishments) are met with an additional ferrite attached to the USB connector cable (camera side).

Warranty

This manual has been prepared and reviewed as carefully as possible but no warranty is given or implied for any errors of fact or in interpretation that may arise. If an error is suspected then the reader is kindly requested to inform us for appropriate action.

The circuits, descriptions and tables may be subject to and are not meant to infringe upon the rights of a third party and are provided for informational purposes only.

The technical descriptions are general in nature and apply only to an assembly group. A particular feature set, as well as its suitability for a particular purpose, is not guaranteed.

Each product is subjected to a quality control process. If a failure should occur then please contact the supplier or Schäfter+Kirchhoff immediately.

The warranty period covers the 24 months from the delivery date. After the warranty has expired, the manufacturer guarantees an additional 6 months warranty for all repaired or substituted product components.

Warranty does not apply to any damage resulting from misuse, inappropriate modification or neglect. The warranty also expires if the product is opened. The manufacturer is not liable for consequential damage.

If a failure occurs during the warranty period then the product will be replaced, calibrated or repaired without further charge. Freight costs must be paid by the sender. The manufacturer reserves the right to exchange components of the product instead of making a repair. If the failure results from misuse or neglect then the user must pay for the repair. A cost estimate can be provided beforehand.

Copyright ©

Unless explicitly allowed, distribution, sale or use of this document or its contents, for purposes other than those intended, is forbidden. Repeated transgressions will lead to prosecution and demands for compensation.

All rights of patent protection and registration or copyright of a product or its design lie with Schäfter+Kirchhoff. Schäfter+Kirchhoff Iogo are registered trademarks.

We reserve the right to improve or change specifications so that the system description and depictions in the Instruction Manual may differ in detail from the system actually supplied. The Instruction Manual is not covered by an update service.

Date of document publication: 15.07.2019

Schäfter+Kirchhoff GmbH
Tel.: +49 40 853 997-0
Kieler Straße 212
Fax: +49 40 853 997-79
22525 Hamburg
Email: info@SuKHamburg.de
Germany
Internet: www.SuKHamburg.com

SK91USB3-WIN

Order Code

SDK from Schäfter + Kirchhoff including the **SKLineScan** operating program, as well as API, C++ class library and examples.

Operating systems: Windows 7 / 8.1 / 10 - x64 and x86

SK91USB3-LV VI

VI-Library for LabVIEW®, requires SK91USB3-WIN

Software SK91USB3-LX

Order Code

SDK from **Schäfter + Kirchhoff** including the **SKLineScan** operating program, as well as libraries and examples.

Operating systems: Linux kernel 3.13 or higher

Accessories

USB 3.0 cable SK9020.x

Camera connector: USB 3.0 plug, type micro-B, with safety lock screws

PC connector: USB 3.0 plug, type A (also fits into a USB 2.0 type A socket)

SK9020.x

1 = 1 m cable length

3 = 3 m cable length (standard)

External synchronization cable SK9026...

for line scan cameras with USB 3.0 interface.

Shielded cable with Hirose plug HR10A, female 6 pin (camera side), and Phoenix 4 pin connector incl. terminal block.

SK9026.x

Order Code

cable length 3 / 5 m Other lengths on request

USB 3.0 active extension cable USB3.EXT.AA10

External power supply +5 VDC, length 10 m

Connectors: 1x socket USB3.0 socket, type A, 1x plug Power in, 5VDC, 1x plug USB3.0, type A (also fits a USB2.0 type A socket)

USB3.EXT.AA10

Order Code

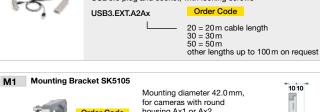
Adapter cable for sync signals CAB-AD Sync-BNC-1

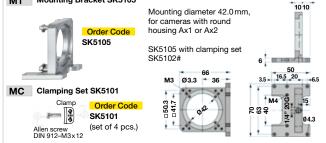
BNC/SMA (3x) to Line Scan Camera Synchronization Cable SK9016/SK9024/SK9026.

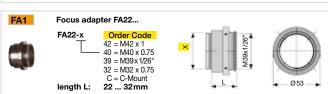
Shielded cable, length 0.25 m

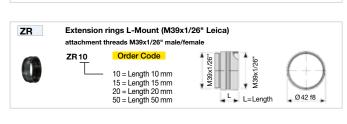
Connectors: 1x Phoenix 4-pin connector 3x SMA plug (Line Sync A, Line Sync B, Frame Sync) 3x adapter SMA socket (outside threading) to BNC-plug

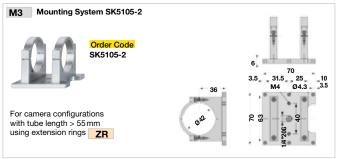
CAB-AD Sync-BNC-1


Order Code




Hybrid cable (copper/fiber), power supply by another USB-connection, cable lenght up to 100 m on request.


Connectors: USB 3.0 plug and socket, with locking screws



for line scan cameras with case type \mathbf{Axx} or \mathbf{BGx} .

AOC-F-...

Order Code

Attachment thread: 45 = M45x0.75 40 = M40x0.75 M32x0 75

C-Mount 1"-32-TP